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We investigate a reversible polymerization process in which individual polymers aggregate and fragment at
a rate proportional to their molecular weight. We find a nonequilibrium phase transition despite the fact that the
dynamics are perfectly reversible. When the strength of the fragmentation process exceeds a critical threshold,
the system reaches a thermodynamic steady state where the total number of polymers is proportional to the
system size. The polymer length distribution has a sharp exponential tail in this case. When the strength of the
fragmentation process falls below the critical threshold, the steady state becomes nonthermodynamic as the
total number of polymers grows sublinearly with the system size. Moreover, the length distribution has an
algebraic tail and the characteristic exponent varies continuously with the fragmentation rate.
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I. INTRODUCTION

Equilibrium systems relax to a steady state described by
the Gibbs distribution. In contrast, nonequilibrium systems
are specified by the dynamics rather than by a Hamiltonian,
and there is no general framework for describing nonequilib-
rium steady states. Furthermore, unlike equilibrium phase
transitions that are characterized by robust universality
classes �1�, nonequilibrium phase transitions are highly sen-
sitive to details of the underlying dynamics �2�.

In this paper, we investigate polymerization dynamics,
and we report that competition between aggregation and
fragmentation results in a remarkable nonequilibrium phase
transition. Despite the fact that the dynamics are perfectly
reversible, there is a nonequilibrium phase transition from a
thermodynamic state where the number of polymers is pro-
portional to the system size into a nonthermodynamic state
where the number of polymers is not proportional to the
system size.

Reversible polymerization is ubiquitous in polymer and
atmospheric chemistry �3–5�, and has analogies in networks
�6� and computer science �7–9�. Reversible polymerization
includes two competing processes: �i� The aggregation pro-
cess �i�+ �j�→ �i+ j�, the merger of two polymer chains of
lengths i and j into a larger polymer, occurs with the aggre-
gation rate Kij. �ii� The fragmentation process �i+ j�→ �i�
+ �j�, the breakage of a polymer into two smaller polymers,
proceeds with rate Fij. This process is reversible because the
aggregation process and the fragmentation process perfectly
mirror each other.

Reversible polymerization is described by the master
equation �10�

dck

dt
=

1

2 �
i+j=k

Kijcicj − ck�
j�1

Kkjcj + �
j�1

Fkjcj+k −
1

2
ck �

i+j=k

Fij ,

�1�

where ck�t� is the density of polymer chains composed of k
monomers at time t. The first two terms describe changes due
to aggregation, and the next two terms account for changes
due to fragmentation. The aggregation and fragmentation

rates are �non-negative� symmetric matrices Kij =Kji and
Fij =Fji. The deterministic master equations are a surrogate
model for the actual stochastic aggregation-fragmentation
process. The master equations yields exact average concen-
trations for infinitely large systems.

In the simplest case, the steady-state distribution is found
by equating the aggregation flux with the fragmentation flux:

Kijcicj = Fijci+j . �2�

This detailed balance condition specifies an equilibrium state
where the fluxes between any two microscopic states of the
system balance. Such an equilibrium steady state exists, for
example, when both the aggregation and fragmentation rates
are constant �11�. Another equilibrium state was found in a
model of strings at very high temperatures with the rates
Kij = ij and Fij = i+ j �12�.

The detailed balance equation �2� admits a solution only
when the aggregation and fragmentation rates satisfy special
relations, as shown in Appendix A. In general, the steady-
state distribution is specified by the full master equation �1�,
and moreover, the detailed balance relations �2� may very
well be violated. For example, in a “chipping” process where
only end monomers can detach from the polymer, the matrix
Fij is sparse: Fij =0 when both i , j�2. For constant aggrega-
tion rates, the chipping process exhibits a nonequilibrium
phase transition. When the fragmentation rate falls below a
certain threshold, a giant macroscopic polymer emerges
�13–16�.

We consider the aggregation and fragmentation rates

Kij = ij, Fij = � . �3�

These rates, while intermediate between the linear chain
model �11� and the string model �12�, violate detailed bal-
ance �see Appendix A�. The product aggregation rate ac-
counts for the natural situation in which any two monomers
may form a chemical bond, thereby leading to the merger of
their respective polymers. This polymerization process has
been widely studied in polymer chemistry �17–21� and in the
context of percolation �22–25�. The constant fragmentation
rate reflects situations where all chemical bonds in the linear
polymer are equally likely to break, thereby leading to break-
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age into two smaller polymers. This depolymerization pro-
cess has also been studied extensively �26�. Like the aggre-
gation rate, the total fragmentation rate is linear in the
molecular weight, �i+j=kFij =��k−1�.

Starting with N monomers, we study the nonequilibrium
steady states that emerge in the reversible polymerization
process �3�. We find that the system generally reaches a
steady state and that a nonequilibrium phase transition oc-
curs at the critical fragmentation rate �c=1. The average total
number of polymers, Ntot, grows algebraically with the sys-
tem size N,

Ntot � N�, with � =
2�

2 + �
, �4�

when fragmentation is weak, ���c. The total number of
polymers grows sublinearly with the system size because
��1. Moreover, large polymers are likely as the polymer
size distribution has a broad algebraic tail. The system de-
velops this nonthermodynamic state through a gelation tran-
sition. We probe this gelation using moments of the size
distribution.

In contrast, the system reaches an ordinary steady state
when the fragmentation process is strong. The average
total number of polymers is proportional to the system size,
Ntot= �1−�−1�N, when ���c. Large polymers become rare
since the polymer size distribution has a sharp exponential
tail.

Interestingly, even though the polymerization process
is reversible because the underlying aggregation
��i�+ �j�→ �i+ j�� and fragmentation ��i+ j�→ �i�+ �j�� pro-
cesses perfectly mirror each other and none of the transition
rates �3� vanish, the breakdown of detailed balance leads to a
remarkable phase transition involving a nonthermodynamic
phase where the number of polymers is not proportional to
the system size and a thermodynamic phase where the num-
ber of polymers is proportional to the system size.

The rest of this paper is organized as follows. The ther-
modynamic steady states that occur under strong fragmenta-
tion are examined in the next section, while the nonthermo-
dynamic steady states that emerge when fragmentation is
weak are analyzed in Sec. III. The gelation transition is
probed using the moments of the size distribution in Sec. IV.
Monte Carlo simulation results validating the theoretical pre-
dictions for the nonthermodynamic phase are detailed in Sec.
V. We discuss the results and several open-ended questions in
Sec. VI. Appendixes A–C contain several technical deriva-
tions.

II. THERMODYNAMIC PHASE

Our focus is the steady-state behavior and, in particular,
the stationary polymer size density ck that satisfies

1

2 �
i+j=k

ijcicj − kck = − ��
j�k

�

cj +
�

2
�k − 1�ck. �5�

This steady-state equation is obtained by substituting the ag-
gregation and fragmentation rates �3� into the stationary mas-
ter equation �1�. At the steady state, changes due to aggrega-

tion, represented on the left-hand side, balance changes due
to fragmentation, represented on the right-hand side. Since
both aggregation and fragmentation do not alter the total
mass, the overall mass density �kkck is a conserved quantity,
as follows from the rate equation �1�. We conveniently set
the normalization �k kck=1 without loss of generality.

The total polymer density M0=�kck is the most elemen-
tary probe for the state of the system. At the steady state, this
quantity satisfies

1

2
=

�

2
�1 − M0� , �6�

an equation obtained by summing �5� and by using the iden-
tity �k� j�kcj =� jcj�k�j1=� j�j−1�cj and the normalization
condition �kkck=1. The total density is nonzero,

M0 = 1 − �−1, �7�

when the fragmentation rate is sufficiently strong, ��1. We
focus on this strong fragmentation regime in the rest of this
section.

Let us assume that the system is large but finite with a
total mass equal to N, a state that can be achieved by starting
with N monomers, for example. The expected total number
of polymers, Ntot=N�kck=NM0, is proportional to the system
size N, and therefore, the system is in a thermodynamic state.

The polymer size density can be calculated by utilizing
the recurrent nature �27� of Eq. �5�. For instance, the mono-
mer and dimer densities are

c1 =
� − 1

� + 1
, �8a�

c2 =
�� − 1��3� + 1�
�� + 1�2�3� + 4�

. �8b�

In general, the polymer size density is finite in the thermo-
dynamic phase, ��1. Very large polymers are rare since the
size distribution decays exponentially,

ck � Ak−5/2e−ak, �9�

when k→�. This result is derived in Appendix B.
When fragmentation is extremely strong, the system

consists primarily of monomers: c1=1+O��−1� and
c2=�−1+O��−2� when �→�. The leading asymptotic behav-
ior can be obtained exactly in this strong fragmentation limit,

ck �
kk−2

k!
� 2

�
	k−1

, �10�

for all k. This expression, obtained in Appendix C, is com-
patible with the generic exponential tail �9�.

Near-critical behavior

The total density, the monomer density, and the dimer
density all vanish near the transition point, M0���−1�,
c1� 1

2 ��−1�, and c2� 1
7 ��−1� as �→1. This behavior sug-

gests the perturbative approach
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ck = �bk, �11�

with the small parameter �=�−1. The first two coefficients
are b1= 1

2 and b2= 1
7 . We substitute this form into the station-

ary equation �5� and observe that the nonlinear aggregation
term 	�2 is negligible. Consequently, to leading order, the
polymer size density obeys the linear recursion equations

kbk = �
j=k+1

�

bj −
1

2
�k − 1�bk, �12a�

�k + 1�bk+1 = �
j=k+2

�

bj −
1

2
kbk+1. �12b�

The second equation is obtained from the first by an index
shift. We subtract the two equations and obtain a recursion
relation for the coefficients bk:

bk+1

bk
=

k − 1
3

k + 4
3

. �13�

The coefficients can be conveniently expressed as a ratio of
gamma functions, bk	
�k−1 /3� /
�k+4 /3�, by using the
identity 
�x+1� /
�x�=x. The polymer size density is there-
fore

bk =
1

2


� 7
3�


� 2
3�


�k − 1
3�


�k + 4
3� , �14�

where the proportionality constant is set by b1= 1
2 .

Near criticality, the size density is algebraic,

ck � �k−5/3, �15�

over a substantial range k�k�. This result follows from �14�
and limx→� xa
�x� /
�x+a�=1. Therefore, the likelihood of
finding large polymers becomes substantial as the phase tran-
sition point is approached. The cutoff scale k�, set by mass
conservation, �k=1

k� kck=1, is divergent:

k� � �−3. �16�

The size distribution is sharply suppressed according to �9�
beyond this scale. Using the relation A�a−1/2, derived in
Appendix B, and a�k�

−1, we deduce that

ck � �−3/2k−5/2e−const��3k �17�

for kk�. Indeed, this large-size behavior matches the small-
size behavior �15� at the crossover scale �16�. We conclude
that the convolution term, which accounts for the creation of
very large polymers from smaller polymers, is relevant only
at very large scales, kk�. Otherwise, this term does not
affect the density of small polymers.

For completeness, we mention that the leading asymptotic
behavior of the moments, Mn=�kk

nck, readily follows from
the density �15� and the cutoff �16�:

Mn � 
�−3�n−1�, n � 2/3,

1, n � 2/3.
� �18�

Sufficiently high-order moments diverge in the vicinity of
the transition point, a consequence of the algebraic tail �15�.
The low-order moments are finite, however.

III. NONTHERMODYNAMIC PHASE

As the critical point is approached, the nonlinear convo-
lution term in �5� becomes irrelevant over the divergent scale
�16�. By continuity, we deduce that the convolution term is
negligible when ��1. Consequently, the stationary distribu-
tion obeys the linear equation

kck = ���
k=1

�

ck − �
j=1

k

cj	 −
�

2
�k − 1�ck �19�

when ��1. We introduce the normalized size density
�k=ck /�kck, with �k�1�k=1. With this transformation, the
stationary equation �19� becomes

k�k = ��1 − �
j=1

k

� j	 −
�

2
�k − 1��k. �20�

The monomer and dimer densities follow immediately:

�1 =
�

1 + �
, �21a�

�2 =
2�

�1 + ���4 + 3��
. �21b�

The normalized densities undergo a phase transition at
�c=1, as shown in Fig. 1. The fraction of monomers is not
affected by the convolution term and �21a� and �21b� holds
for all �. However, the dimer density �21a� and �21b� differs
from the expression �2= ��1+3��

�1+��2�4+3�� for ��1 implied by �8a�,
�8b�, and �7�. Similarly, the normalized size densities �k ex-
hibit a phase transition for all k�1.

0.0 0.2 0.4 0.6 0.8 1.0
ρ1

0.00
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FIG. 1. �Color online� The normalized dimer density �2 versus
the normalized monomer density �1. The phase transition at �c=1 is
reflected by the discontinuity in the first derivative at �1=1 /2.
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Generally, we recast Eq. �20� into the following recursion
for the normalized densities:

�k+1

�k
=

k − �
2+�

k +
2�1+��

2+�

. �22�

This recursion is obtained by repeating the steps leading to
�13�. Again, we express the normalized densities as a ratio of
gamma functions, �k	
�k− �

2+� � /
�k+ 2�1+��
2+� �. The monomer

density �21a� and �21b� sets the proportionality constant and,
hence,

�k =
�

1 + �


�1 +
2�1+��

2+� �

�1 − �

2+��

�k − �

2+��

�k +

2�1+��
2+� � . �23�

The size density has an algebraic tail,

�k � k−�, with � =
2 + 3�

2 + �
, �24�

as k→�, thereby implying that large polymers are likely.
The decay exponent 1���5 /3 is not universal. Of course,
this power-law behavior matches the near-critical tail �17�
since �→5 /3 when �→1.

The size density obeys ck	�k, and the N-dependent pro-
portionality constant is obtained from the mass conservation
condition �k=1

N kck=1, where the upper limit of integration is
set by the system size. This sum is dominated by the density
of large polymers. By performing the summation, we find
that the polymer size density depends on the system size:

ck � N�−2k−�. �25�

The total number of clusters, Ntot�N�kck, grows sublinearly
with the system size, Ntot�N�, with �=�−1, as announced
in �4�. Therefore, the total polymer density M0�N�−2 de-
pends on the system size in contrast with the behavior when
��1. In deriving the steady-state equation �19�, we assumed
that the convolution term is negligible. This assumption is
consistent with the fact that the amplitude N�−2 in �25� van-
ishes as the system size diverges.

Moreover, the expected total number of polymer of size k,
Ck=Nck, is as follows: Ck�N�k−�, with �= 2�

2+� . This steady
state is not thermodynamic. The number of polymers is much
smaller than the system size, yet the number of polymers still
diverges with the total mass: Ck grows sublinearly with the
system size because ��1.

For irreversible polymerization, �=0, all mass eventually
ends up in a single giant polymer, as reflected by the char-
acteristic exponent �=0. The total number of polymers still
grows sublinearly, Ntot�N2/3, when the critical point is ap-
proached, �→1.

In the thermodynamic phase, all polymers are finite in
size. Indeed, the exponential tail behavior �9� implies that the
largest polymers are finite in scale. Near criticality, the scale
of the largest polymers diverges according to �16�. In the
nonthermodynamic phase, there are polymers of all possible
scales because the power-law behavior �25� holds up to the
system size 	N. Remarkably, there are polymers that contain

a finite fraction of all the mass in the system because, ac-
cording to �25�, the total number of macroscopic clusters,
N�k�const.�Nck, is of order 1.

There are therefore very different behaviors in the two
phases. In the thermodynamic phase, there are many small
clusters. In the nonthermodynamic phase, there are a few
large clusters. A small number of macroscopic clusters con-
tain a fraction of the mass, while the rest of the mass is
contained in clusters of all possible scales up to the system
size.

The power-law distribution �24� accounts for a competi-
tion between two fluxes. There is a flux of mass from small
scales to large scales that is generated by the aggregation
process and a flux from large scale to small scales caused by
fragmentation. The power-law behavior holds for all scales,
indicating that these two fluxes balance at all intermediate
scales. Similar competitions between the fluxes occur in fluid
turbulence �28�, passive scalar advection �29�, wave turbu-
lence �30�, granular gases �31�, and driven aggregation sys-
tems �32–34�. However, reversible polymerization differs
from these driven system in that there is no external injection
of mass to maintain the steady-state.

IV. GELATION TRANSITION

We now study the approach toward the steady state speci-
fied by the full master equation

dck

dt
=

1

2 �
i+j=k

ijcicj − kck + ��
j�k

�

cj −
�

2
�k − 1�ck. �26�

Initially, there are only monomers, ck�t=0�=�k,1.
First, we consider the total polymer density M0, which

obeys the linear rate equation

dM0

dt
= −

1

2
+

�

2
�1 − M0� . �27�

Subject to the initial condition M0�0�=1, the total density is

M0 = 1 − �−1 + �−1e−�t/2. �28�

Hence, the steady-state equation �7� is approached exponen-
tially fast in the thermodynamic phase. Moreover, the mono-
mer and dimer densities also relax exponentially fast as in
�28�, and in general, the polymer size density quickly ap-
proaches the steady state when ��1.

We focus on the kinetics in the more interesting nonther-
modynamic phase where the total polymer density �28� van-
ishes at time t0= 2

� ln 1
1−� . This behavior is consistent with the

vanishing total density, M0�N�−2, implied by �25�. Of
course, the negative expression �28� is invalid beyond the
time t0.

The moments Mn=�kk
nck provide a direct probe of the

kinetics. In the nonthermodynamic phase, the system nucle-
ates large macroscopic gels, and consequently, large mo-
ments diverge with the system size as follows from �25�.
This, together with the vanishing overall density M0, indi-
cates that the system undergoes a gelation transition at a
finite time. At the gelation time tg, a giant polymer or a gel
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emerges as is the case for irreversible polymerization
��=0�. From the master equation �26�, the moments evolve
according to

dMn

dt
=

1

2 �
m=1

n−1 � n

m
	Mm+1Mn+1−m −

�

2

n − 1

n + 1
Mn+1

+
�

n + 1 �
m=2

n �n + 1

m
	BmMn+1−m, �29�

where Bm are the Bernoulli numbers �35�. For example, the
second moment obeys dMn /dt=M2

2− �
6 �M3−1�. We assume

that large order moments diverge algebraically at the gelation
time, Mn��tg− t�−�an+b� for n�1, and observe that the last
term in the hierarchical equation �29� is negligible compared
with the rest of the terms. We require that the time-dependent
term, the aggregation term, and the remaining fragmentation
term to be comparable and find that a=−b=1. Hence,

Mn � �tg − t�−�n−1� �30�

for n�1. Indeed, the moments diverge at a finite time. The
exponent n−1 characterizing this divergence is compatible
with the near-critical behavior �18�. The divergence �30� is
different than the Mn��tg− t�−�2n−3� behavior in irreversible
fragmentation �23�, and therefore, fragmentation quantita-
tively alters the nature of the gelation transition.

We conclude that the solution to the master equation �26�
exhibits a finite time singularity. Even though we cannot ob-
tain the gelation time tg exactly, the relevant properties of the
size density including the moments can still be obtained ana-
lytically. In particular, the form of the size density at the
gelation time can be calculated by balancing the fluxes of
mass due to aggregation and fragmentation, following the
scaling analysis in Ref. �36�.

Consider M�n�, the total mass density of polymers with
size smaller than n,

M�n��t� = �
k=1

n

kck�t� . �31�

According to the master equation �26�, this quantity obeys

dM�n�

dt
= − �

i=1

n

�
j+i=n−1

�

i2jcicj +
1

2
�n�n + 1� �

j=n+1

�

cj . �32�

We now take the n→� limit. The aggregation loss term
accounts for loss of finite-size polymers to the infinitely large
gel, while the fragmentation term accounts for the balancing
flux from the gel into small masses. We require that the two
fluxes balance at the gelation point. We assume that at the
gelation point, the size density decays algebraically,

ck�t = tg� � k−�, �33�

for k1, as is the case for irreversible polymerization �24�.
By dimensional counting, the aggregation flux term scales as
n5−2�, while the fragmentation flux scales as n3−�. The two
fluxes balance when 5−2�=3−�, and as a result, �=2.
Therefore, ck�t= tg��k−2, a behavior that is consistent with
the aforementioned divergence of the moments �30� when

the power-law behavior �33� holds up to a cutoff scale that
diverges near gelation, k� �tg− t�−1.

The normalization condition �kkck=1 imposes the expo-
nent restriction ��2, but the heuristic argument above yields
precisely the marginal value �=2. We therefore anticipate
that there is a logarithmic correction with the following
form: ck�k−2�ln k�−�. We substitute this form into �32�, and
then, the aggregation term is of the order of n�ln n�1−2�,
while the fragmentation term is of the order of n�ln n�−�.
Therefore, �=1 and �37�

ck � k−2�ln k�−1 �34�

for k1. This decay is milder than the ck�k−5/2 behavior
found for irreversible polymerization �24�, and therefore,
there are many more large clusters in reversible polymeriza-
tion.

The size of the largest gel at the gelation transition fol-
lows immediately from the extreme statistics criterion
N�k=1

kg ck=1. Remarkably, this size is nearly macroscopic in
the size of the system,

kg � N�ln N�−1. �35�

This gel size is much larger compared with the kg�N2/3

behavior in reversible polymerization. This increased scale
enables the gel to withstand fragmentation. We also comment
that the nearly macroscopic size scale �35� provides the ap-
propriate cutoff in �31�, n�kg, and that at the gelation point,
the upward mass aggregation flux, and the downward mass
fragmentation flux are nearly macroscopic; that is, they are
proportional to the system size up to a logarithmic correc-
tion.

Critical case

For completeness, we discuss kinetics in the critical case
�=1 where the cluster density �28� is purely exponential,
M0=e−t/2. A similar decay characterizes the leading behavior
of the size density. For example, the monomer density obeys
dc1 /dt=−c1+ �M0−c1�, and consequently,

c1 =
2

3
e−t/2 +

1

3
e−2t. �36�

Only the first term is relevant asymptotically, c1� 2
3e−t/2. In

general, ck�uke
−t/2, and by substituting this expression into

the time-dependent master equation �26�, we observe that the
nonlinear term is negligible. Consequently, the coefficients
uk satisfy the recursion equation

�k −
1

2
	uk = �

j=k+1

�

uj −
1

2
�k − 1�uk. �37�

From this recursion, the coefficients uk satisfy
uk+1 /uk= �k−2 /3� / �k+1�. Therefore, the leading behavior of
the size density is as follows:

uk =
2

3
� 1
3�


�k − 2
3�


�k + 1�
. �38�

The tail of the size density matches the near critical behavior
�15�, ck�e−t/2k−5/3.
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V. NUMERICAL SIMULATIONS

We performed numerical simulations to validate the theo-
retical predictions. Below, we present results for the nonther-
modynamic phase.

The simulations were performed by starting with N
monomers and were carried by repeating the following
Monte Carlo step. At each step, the total aggregation
rate Ra= 1

N�i�jsisj and the total fragmentation rate
Rf =2�i�si−1� are calculated where si is the size of the ith
polymer. Of course, both of these rates are proportional to
the system size, Ra	Rf 	N. An aggregation event is ex-
ecuted with probability Ra / �Ra+Rf�, while a fragmentation
event is executed with the complementary probability
Rf / �Ra+Rf�. In each aggregation event, one polymer is cho-
sen with probability proportional to its size and is merged
with another polymer, also chosen with probability propor-
tional to its size. In a fragmentation event, a polymer, ran-
domly chosen with probability proportional to the number of
its bonds, is randomly split into two smaller polymers. Time
is updated by the inverse of the total rate t→ t+ �Ra+Rf�−1

after each Monte Carlo step. As a check, we successfully
reproduced the total polymer density �7�.

In the nonthermodynamic phase, the system undergoes a
gelation transition and then relaxes to the steady state. We
ran the simulations until the system relaxed to the steady
state and then obtained the size distribution from a long se-
ries of measurements to reduce statistical fluctuations. The
simulations results are for systems of size N=105. We
present results for the normalized densities �k predicted in
�23�. Overall, there is very good agreement between the the-
oretical predictions and the simulation results as shown in
Fig. 2. The size distribution agrees with �23�, and the tail of
the distribution follows a power law as in �24�. The simula-
tion results agree with the theoretical results slightly better
near the phase transition point �Figs. 2�a� and 2�b��. Since
the total number of clusters grows sublinearly with the sys-
tem size, Ntot�N� with ��1, extremely large systems are
needed to reduce the magnitude of the statistical fluctuations.
Such fluctuations are most pronounced at the tail region
where the discrepancy between the theory and the simulation
is a result of the limited system size.

To quantify fluctuations in the total number of polymers,
we also measured the variance �2= �Ntot

2 − �Ntot2. We find
that the fluctuations follow a central-limit-like behavior
�2��Ntot �Fig. 3�, and therefore,

�2 � N�, with � =
2�

� + 2
, �39�

as in �4�.

VI. DISCUSSION

In summary, we studied stationary and dynamical proper-
ties of reversible polymerization. We found an interesting
phase transition involving a thermodynamic phase and a
nonthermodynamic phase. When fragmentation is strong, the
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FIG. 2. �Color online� The size distribution �k versus k for �a�
�=0.9 and �b� �=0.5. The simulation results are for a system of
size N=105.
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FIG. 3. �Color online� Fluctuations in the total number of clus-
ters. Shown are the average number of clusters, �Ntot, and the vari-
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2 − �Ntot2 for �=0.5.
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system is in a thermodynamic phase and the number of poly-
mers is proportional to the system size. The system includes
a large number of small polymers. When fragmentation is
weak, the system is in a nonthermodynamic phase as the
total number of polymers grows sublinearly with the system
size. In this phase, there are a small number of large poly-
mers since the size distribution is power law. Moreover, the
polymer sizes are distributed at all scales. Macroscopic gels
may exist as well.

In the thermodynamic phase, the system quickly ap-
proaches the steady state. The time-dependent behavior is
much richer in the nonthermodynamic phase. The system
exhibits a finite-time singularity: large moments of the size
distribution diverge at the finite gelation time. At this time,
the system nucleates macroscopic gels and the size distribu-
tion follows a universal algebraic decay. Past the gelation
time, there is a second relaxation stage leading the system to
a state where there are two balancing fluxes of mass: aggre-
gation transfers mass from small scales to large scales and
fragmentation transfers mass from large scales to small
scales. The stationary size distribution is algebraic, but the
characteristic exponent is not universal.

Even though the aggregation process is described by non-
linear terms, the analysis in the nonthermodynamic phase
involves linear equations because the aggregation gain term
is relevant only at the largest scale. Nevertheless, formation
of gels at the largest possible scale �in our case, the system
size� is crucial in maintaining a stationary state. Understand-
ing the distribution of macroscopic gels is an open challenge,
and our numerical simulations reveal an interesting anomaly
with an enhancement of the population of macroscopic gels
over the algebraic distribution �25� at the maximal scale.

Missing from our calculations is a finite-size scaling
analysis �38–41� near the phase transition point. Interest-
ingly, the total number of clusters grows sublinearly,
Ntot�C���N2/3, just below the phase transition point, but lin-
early just above the phase transition point, Ntot���−1�N.
Therefore, the amplitude C��� may very well be divergent,
and moreover, there must be an intermediate range of frag-
mentation rates centered around the critical point with a
smooth crossover between the two phases. The width of this
transition region should vanish as the system size increases.

Understanding fluctuations is another interesting direction
for further research. We find Gaussian fluctuations in the
thermodynamic phase and are able to compute the variance
�2= 2

�N but we are unable to obtain �39� in the nonthermo-
dynamic phase.

We also checked that the same phase transition generally
holds as long as the aggregation rate is asymptotically pro-
portional to the molecular weights—for instance, when
Kij =Aij+B�i+ j�+C, a class of models that often arise in
polymer chemistry �3,4�. A more complete characterization
of phase transitions in reversible polymerization is another
avenue for future work.

Finally, another challenge is to understand the behavior in
low spatial dimensions and, in particular, to investigate the
nature of the gelation transition as well as the nature of the
nonequilibrium steady state.
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APPENDIX A: DETAILED BALANCE

In this appendix, we demonstrate that the detailed balance
equation �2� does not generally have a solution. The size
densities ck satisfy

K11c1
2 = F11c2,

K12c1c2 = F12c3,

K13c1c3 = F13c4,

K22c2
2 = F22c4, �A1�

for k=1,2 ,3 ,4. The dimer density and the trimer density are
uniquely expressed in terms of the monomer density:

c2 =
K11

F11
c1

2, c3 =
K11

F11

K12

F12
c1

3. �A2�

However, there are two expressions for the 4-mer density:

c4 =
K11

F11

K12

F12

K13

F13
c1

4, c4 = �K11

F11
	2K22

F22
c1

4. �A3�

These two are identical only when the aggregation and frag-
mentation rates satisfy the constraint

K12

F12

K13

F13
=

K11

F11

K22

F22
. �A4�

Therefore, the detailed balance equation �2� has a solution
only for special aggregation and fragmentation rates. The
constraint �A4� reflects the fact that there are multiple paths
between two states of the system. For example, a 4-mer may
be formed by two dimers or by a trimer and a monomer. The
detailed balance condition �2� requires that the fluxes be-
tween any two states of the system balance along all possible
paths. This condition leads to constraints of the type �A4�.
The rates �3� violate the constraint �A4� as well as infinitely
many other constraints. We conclude that, in general, the
detailed balance equations are overdetermined—there are in-
finitely many constraints like �A4�, and a solution does not
necessarily exist.

APPENDIX B: LARGE-SIZE ASYMPTOTICS

We analyze the large-size asymptotic behavior of the
polymer size density in the thermodynamic phase by intro-
ducing the generating function

G�z� = �
k

cke
kz. �B1�

The generating function obeys the differential equation

�G��2

2
− G� = �

G − M0ez

1 − ez −
��G − G��

2
, �B2�

where �� d
dz as follows from �5�. Next, we shift the gener-

ating function by the total density
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G�z� = M0 + F�z� , �B3�

where M0 is given by �7�. With this transformation, the dif-
ferential Eq. �B2� becomes

�F��2 − �2 + ��F� + 1 − � + �F
ez + 1

ez − 1
= 0. �B4�

By solving this quadratic equation for F�, we find

F��z� = 1 +
�

2
− ���z� , �B5�

with the shorthand notation

��z� =
1

4
�2 + 2� − �F�z�

ez + 1

ez − 1
. �B6�

The asymptotic behavior of the size density follows from the
singular behavior of the generating function. For instance,
the asymptotic behavior

ck � Ak−�e−ak �B7�

implies that the generating function has the expansion

G�z� = G�a� + G��a��z − a� + A
�1 − ���a − z��−1 + ¯

�B8�

when z→a. Here, it is implicitly assumed that 2���3. By
differentiating this equation and by using G�=F�, we further
obtain

F��z� = F��a� + A
�2 − ���a − z��−2. �B9�

We now choose a to be the root of ��z�, ��a�=0, and as a
result, Eq. �B5� becomes

F��z� = 1 +
�

2
− �− ���a��a − z�1/2 + ¯ �B10�

when z→a. We obtain F��a�=1+� /2 by matching the regu-
lar terms in �B9� and �B10� and

� = 5/2, A
�− 1/2� = − �− ���a� �B11�

by matching the singular terms. Therefore, the asymptotic
behavior is �9�.

The amplitude A can be expressed in terms of ���a�.
Differentiation of Eq. �B6� yields

���z� = − ��F��z�
ez + 1

ez − 1
− 2F�z�

ez

�ez − 1�2� . �B12�

We next set z=a and use

F��a� = 1 +
�

2
, 2F�a�

ea + 1

ea − 1
= 4 +

�

2
, �B13�

which follows from �B6�,and ��a�=0 to obtain

���a� = −
�

2
��2 + ��

ea + 1

ea − 1
− �8 + ��

ea

e2a − 1
� . �B14�

By using Eqs. �B11� and �B14� together with the identity

�−1 /2�=−2
�1 /2�=−�4� we obtain a relation between the
amplitude A and the constant a:

A =� �

8�

ea + 1

ea − 1�2 + � − �8 + ��
ea

�ea + 1�2� . �B15�

In particular, A��3 / �16�a�, when �→1.

APPENDIX C: EXTREMELY STRONG FRAGMENTATION

The leading asymptotic behavior in the strong frag-
mentation limit �→� can be obtained analytically. The
steady-state equation �5� shows that c1=1+O��−1� and
c2=�−1+O��−2� and that, in general,

ck � � 2

�
	k−1

hk �C1�

when �→�.
To leading order, this form is consistent with the govern-

ing equation �5� when the coefficients hk satisfy the recursion
equation

�k − 1�hk =
1

2 �
i+j=k

ijhihj . �C2�

The first two coefficients are h1=1 and h2=1 /2. We solve
this recursion using the generating equation H�z�=�kkhke

kz.
Next, we multiply �C2� by kekz and sum over all k to find that
the generating function satisfies the nonlinear differential
equation

H� − H = HH�. �C3�

We now integrate this equation and find the implicit solution
He−H=ez. The explicit solution

H�z� = �
k=1

�
kk−1

k!
ekz �C4�

follows from the Lagrange inversion formula �42�. There-
fore, the coefficients are hk=kk−2 /k! and the leading
asymptotic behavior is �10�. The large-size asymptotic be-
havior

ck =
e

�2�
k−5/2�2e

�
	k−1

�C5�

when k1, obtained using the Stirling formula
n ! ��2�nnne−n, is consistent with the generic asymptotic
behavior �9�.

E. BEN-NAIM AND P. L. KRAPIVSKY PHYSICAL REVIEW E 77, 061132 �2008�

061132-8



�1� H. E. Stanley, Introduction to Phase Transitions and Critical
Phenomena �Oxford University Press, New York, 1971�.

�2� H. Hinrichsen, Adv. Phys. 49, 815 �2000�.
�3� P. J. Flory, Principles of Polymer Chemistry �Cornell Univer-

sity Press, Ithaca, NY, 1953�.
�4� R. L. Drake, in Topics in Current Aerosol Researches, edited

by G. M. Hidy and J. R. Brock �Pergamon, New York, 1972�,
p. 201.

�5� J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and
Physics �Wiley, New York, 1998�.

�6� R. Albert and A. L. Barabasi, Rev. Mod. Phys. 74, 47 �2002�.
�7� B. Ballobás, Random Graphs �Academic, London, 1985�.
�8� D. J. Aldous, Bernoulli 5, 3 �1999�.
�9� S. Janson, T. Łuczak, and A. Rucinski, Random Graphs

�Wiley, New York, 2000�.
�10� The rate equation �1� is a mean-field equation, and therefore, it

could be invalid for low-dimensional systems. Nevertheless,
this master equation can be justified in a number of experimen-
tally relevant conditions including, for example, three-
dimensional systems, dilute conditions, and well-mixed solu-
tions.

�11� P. J. Blatz and A. V. Tobolsky, J. Phys. Chem. 49, 77 �1945�.
�12� D. A. Lowe and L. Thorlacius, Phys. Rev. D 51, 665 �1995�.
�13� R. D. Vigil, R. M. Ziff, and B. Lu, Phys. Rev. B 38, 942

�1988�.
�14� P. L. Krapivsky and S. Redner, Phys. Rev. E 54, 3553 �1996�.
�15� S. N. Majumdar, S. Krishnamurthy, and M. Barma, Phys. Rev.

Lett. 81, 3691 �1998�.
�16� R. Rajesh and S. N. Majumdar, Phys. Rev. E 63, 036114

�2001�.
�17� P. J. Flory, J. Am. Chem. Soc. 63, 3083 �1941�.
�18� W. H. Stockmayer, J. Chem. Phys. 11, 45 �1943�.
�19� J. D. Barrow, J. Phys. A 14, 729 �1981�.
�20� J. L. Spouge, Macromolecules 16, 121 �1983�; J. Stat. Phys.

31, 363 �1983�.
�21� P. G. J. van Dongen and M. H. Ernst, J. Stat. Phys. 37, 301

�1984�.
�22� D. Stauffer and A. Aharony, Introduction to Percolation

Theory �Taylor & Francis, London, 1992�.
�23� F. Leyvraz, Phys. Rep. 383, 95 �2003�.
�24� R. M. Ziff, E. M. Hendriks, and M. H. Ernst, Phys. Rev. Lett.

49, 593 �1982�.
�25� A. A. Lushnikov, Phys. Rev. Lett. 93, 198302 �2004�.
�26� R. M. Ziff and E. D. McGrady, Macromolecules 19, 2513

�1986�.
�27� The recurrent structure of Eq. �5� becomes apparent after re-

writing � j�kcj as M0−� j�kcj.
�28� U. Frisch, Turbulence: The legacy of A. N. Kolmogorov �Cam-

bridge University Press, New York, 1995�.
�29� G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Mod.

Phys. 73, 913 �2001�.
�30� V. Zakharov, V. Lvov, and G. Falkovich, Kolmogorv Spectra

of Turbulence �Springer-Verlag, Berlin, 1992�.
�31� E. Ben-Naim and J. Machta, Phys. Rev. Lett. 94, 138001

�2005�.
�32� H. Takayasu, Phys. Rev. Lett. 63, 2563 �1989�.
�33� P. L. Krapivsky, J. F. F. Mendes, and S. Redner, Eur. Phys. J. B

4, 401 �1998�; Phys. Rev. B 59, 15950 �1999�.
�34� C. Connaughton, R. Rajesh, and O. Zaboronski, Phys. Rev. E

69, 061114 �2004�; Physica D 222, 97 �2006�.
�35� R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Math-

ematics �Addison-Wesley, New York, 1998�.
�36� P. G. J. van Dongen and M. H. Ernst, Phys. Rev. Lett. 54,

1396 �1985�.
�37� A refined analysis yields the further nested logarithms ck

�k−2�ln k�−1�ln ln k�−1�ln ln ln k�−1
¯.

�38� B. Bollobás, C. Borgs, J. T. Chayes, J. H. Kim, and D. B.
Wilson, Random Struct. Algorithms 18, 201 �2001�.

�39� E. Ben-Naim and P. L. Krapivsky, Phys. Rev. E 69, 050901�R�
�2004�.

�40� D. A. Kessler and N. M. Shnerb, Phys. Rev. E 76, 010901�R�
�2007�.

�41� E. Ben-Naim and P. L. Krapivsky, Phys. Rev. E 71, 026129
�2005�.

�42� H. S. Wilf, Generatingfunctionology �Academic, Boston,
1990�.

PHASE TRANSITION WITH NONTHERMODYNAMIC STATES … PHYSICAL REVIEW E 77, 061132 �2008�

061132-9


